
COP 4710: Database Systems (Chapter 2) Page 1 © Mark Llewellyn

COP 4710: Database Systems
Fall 2006

Chapter 2 – Introduction to Data Modeling

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/fall2006

COP 4710: Database Systems (Chapter 2) Page 2 © Mark Llewellyn

• Semantic data models attempt to capture the “meaning” of
a database. Practically, they provide an approach for
conceptual data modeling.

• Over the years there have been several different semantic
data models that have been proposed.

• By far the most common is the entity-relationship data
model, most often referred to as simply the E-R data
model.

• The E-R model is often used as a form of communication
between database designers and the end users during the
developmental stages of a database.

Introduction to Data Modeling

COP 4710: Database Systems (Chapter 2) Page 3 © Mark Llewellyn

• The E-R model contains an extensive set of modeling
tools, some of which we will not be concerned with as our
primary objective is to give you some insight into
conceptual database design and not learning all of the ins
and outs of the E-R model.

• Another conceptual modeling which is becoming more
common is the Object Definition Language (ODL) which
is an object-oriented approach to database design that is
emerging as a standard for object-oriented database
systems.

Introduction to Data Modeling (cont.)

COP 4710: Database Systems (Chapter 2) Page 4 © Mark Llewellyn

• The database design process can be divided into six basic
steps. Semantic data models are most relevant to only the
first three of these steps.

1. Requirements Analysis: The first step in designing a
database application is to understand what data is to be
stored in the database, what applications must be built on
top of it, and what operations are most frequent and subject
to performance requirements. Often this is an informal
process involving discussions with user groups and
studying the current environment. Examining existing
applications expected to be replaced or complemented by
the database system.

Database Design

COP 4710: Database Systems (Chapter 2) Page 5 © Mark Llewellyn

2. Conceptual Database Design: The information gathered in
the requirements analysis step is used to develop a high-
level description of the data to be stored in the database,
along with the constraints that are known to hold on this
data.

3. Logical Database Design: A DBMS must be selected to
implement the database and to convert the conceptual
database design into a database schema within the data
model of the chosen DBMS.

Database Design (cont.)

COP 4710: Database Systems (Chapter 2) Page 6 © Mark Llewellyn

4. Schema Refinement: In this step the schemas developed in
step 3 above are analyzed for potential problems. It is in
this step that the database is normalized. Normalization of
a database is based upon some elegant and powerful
mathematical theory. We will discuss normalization later
in the term.

5. Physical Database Design: At this stage in the design of a
database, potential workloads and access patterns are
simulated to identify potential weaknesses in the
conceptual database. This will often cause the creation of
additional indices and/or clustering relations. In critical
situations, the entire conceptual model will need
restructuring.

Database Design (cont.)

COP 4710: Database Systems (Chapter 2) Page 7 © Mark Llewellyn

6. Security Design: Different user groups are identified and
their different roles are analyzed so that access patterns to
the data can be defined.

• There is often a seventh step in this process with the last
step being a tuning phase, during which the database is
made operational (although it may be through a
simulation) and further refinements are made as the system
is “tweaked” to provide the expected environment.

• The illustration on the following page summarizes the
main phases of database design.

Database Design (cont.)

COP 4710: Database Systems (Chapter 2) Page 8 © Mark Llewellyn

Database Design (cont.)

Miniworld

Requirements Collection and Analysis

Conceptual Design

Logical Design – (data model mapping)

Physical Design

Database Requirements

Conceptual Schema (high-level data model)

Logical Schema (data model of specific DBMS)

Internal Schema

Functional Requirements

Functional Analysis

High-level Transaction Specification

Application Program Design

Transaction Implementation

Application Programs

D
BM

S-
in

de
pe

nd
en

t
D

B
M

S
-s

pe
ci

fic

COP 4710: Database Systems (Chapter 2) Page 9 © Mark Llewellyn

• The E-R model employs three basic notions: entity sets,
relationship sets, and attributes.

• An entity is a “thing” or “object” in the real world that is
distinguishable from all other objects. An entity may be
either concrete, such as a person or a book, or it may be
abstract, such as a bank loan, or a holiday, or a concept.

• An entity is represented by a set of attributes. Attributes
are descriptive properties or characteristics possessed by
an entity.

• An entity set is a set of entities of the same type that share
the same attributes. For example, the set of all persons
who are customers at a particular bank can be defined as
the entity set customers.

The Entity-Relationship Model

COP 4710: Database Systems (Chapter 2) Page 10 © Mark Llewellyn

• Entity sets do not need to be disjoint. For example, we
could define the entity set of all persons who work for a
bank (employee) and the entity set of all persons who are
customers of the bank (customers). A given person entity
might be an employee, a customer, both, or neither.

• For each attribute, there is a permitted set of values, called
the domain (sometimes called the value set), of that
attribute. More formally, an attribute of an entity set is a
function that maps from the entity set into a domain. Since
an entity set may have several attributes, each entity in the
set can be described by a set of <attribute, data-value>
pairs, one for each attribute of the entity set.

• A database contains a collection of entity sets.

The Entity-Relationship Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 11 © Mark Llewellyn

E-R Model Notation

E entity set

E weak entity set

a attribute

aa multi-valued attribute

a derived attribute
R relationship

R
identifying relationship
for a weak entity set

total participation of
entity set in relationshipER

ER
partial participation of
entity set in relationship

attribute primary key

COP 4710: Database Systems (Chapter 2) Page 12 © Mark Llewellyn

E-R Model Notation (cont.)

1:1 cardinality from E1 to E2

attribute
discriminating attribute of
a weak entity set

E1 R E2

E1 R E2 1:M cardinality from E1 to E2

E1 R E2 alternate form for 1:M cardinality from E1 to E21 M

E1 R E2 M:1 cardinality from E1 to E2

E1 R E2 M:M cardinality from E1 to E2

E1 R E2 alternate form for M:M cardinality from E1 to E2N M

COP 4710: Database Systems (Chapter 2) Page 13 © Mark Llewellyn

E-R Model Notation (cont.)

ISA (specialization or generalization)(partial participation)ISAISA

ISAISA

disjoint

Disjoint ISA (specialization or generalization)

ISAISA Total generalization

COP 4710: Database Systems (Chapter 2) Page 14 © Mark Llewellyn

E-R Model Notation (cont.)

Aggregation: box drawn around relationship
which is treated as an entity

E1 R1 E2

E3

R2

E4

R E2

Structural constraint: (min,max) on the
participation of an entity in a relationship

(min,max)

COP 4710: Database Systems (Chapter 2) Page 15 © Mark Llewellyn

Example E-R Diagram (ERD)

customer loanborrower

customer-id

customer-name

customer-street

customer-city

customer-id

amount

COP 4710: Database Systems (Chapter 2) Page 16 © Mark Llewellyn

Example E-R Diagram

Visio Pro 2003 Version

Customer

PK customer_id

 customer_name
 customer_street
 customer_city

Loan

PK,FK1 customer_id

 amount

borrower

Mandatory on the
one side of the 1:M

relationship

Optional on the
many side of the
1:M relationship

COP 4710: Database Systems (Chapter 2) Page 17 © Mark Llewellyn

Another Example ERD

customer

customer-id

customer-name street

apartment-num

phone-num

date-of-birth

age

first-name

middle-name

last-name

address

city

state

zipcode

street-name

street-num

COP 4710: Database Systems (Chapter 2) Page 18 © Mark Llewellyn

• As used in the E-R model, an attribute can be characterized
by the following attribute types:

• Simple or Composite: A simple attribute contains no
subparts while a composite attribute will contain subparts.
For example, consider the attribute name. If name
represents a simple attribute then we must treat the first
name, middle name, and last name as an atomic,
indivisible attribute. On the other hand, if name represents
a composite attribute then we have the option of dealing
with the entire name as a whole or dealing only with one of
the subparts. For example, we could look only at last
names, something that we could not do with a simple
attribute.

Attributes in the E-R Model

COP 4710: Database Systems (Chapter 2) Page 19 © Mark Llewellyn

• Single-valued or Multi-valued: A single-valued attribute
may have at most one value at any particular time instance.
A multiple-valued attribute may have several different
values at any particular time instance.
– For example, consider a particular course at UCF. At any given

moment the number of students enrolled in that course is a single
value, say 100, but not 100, 80, and 45! On the other hand, some
attributes may contain different values at the same time instant.
For example, consider an attribute of the entity set student which
might be phone-number. At any given time instant a student may
have several different phone numbers and thus a multi-valued
attribute would be best to accurately model the student. It is also
common to place lower and upper bounds on the number of
different values that a multi-valued attribute may have at any given
time.

Attributes in the E-R Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 20 © Mark Llewellyn

• Derived: This is an attribute whose value is
derived (computed) from the values of other
related attributes or entities.

– For example, suppose that the bank customer entity set
contains an attribute loans-held, which represents the
number of loans a customer has from the bank. The
value of this attribute can be computed for each
customer by counting the number of loan entities
associated with that customer.

Attributes in the E-R Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 21 © Mark Llewellyn

• Null: An attribute takes a null value when an entity does
not have a value for it. Null values are usually special
cases that can be handled in a number of different ways
depending on the situation.

– For example, it could be interpreted to mean that the attribute is
“not applicable” to this entity, or it could mean that the entity has a
value for this attribute but we don’t know what it is. We will see
later in the term how different systems handle null values and the
different interpretations that may be associated with this special
value.

Attributes in the E-R Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 22 © Mark Llewellyn

• A relationship is an association among several
entities.
– For example, we can define a relationship that associates you

as a student in COP 4710. This relationship might specify
that you are enrolled in this course.

Relationships in the E-R Model

A relationship set is a set of relationships of the same type.
More formally, it is a mathematical relation on n ≥ 2 (possibly non distinct) entity sets.

If E1, E2, …, En are entity sets, then a relationship set R is a subset of:

where is the relationship.

(){ }nn2211n21 Ee,,Ee,Eee,,e,e ∈∈∈

()n21 e,,e,e

COP 4710: Database Systems (Chapter 2) Page 23 © Mark Llewellyn

• The association between entity sets is referred to as
participation; that is, the entity sets E1, E2, …, En
participate in relationship R.

• A relationship instance in an E-R schema represents an
association between named entities in the real world
enterprise which is being modeled.

• A relationship may also have attributes which are called
descriptive attributes. For example, considering the bank
scenario again, suppose that we have a relationship set
depositor with entity sets customer and account. We
might want to associate with the depositor relationship set
a descriptive attribute called access-date to indicate the
most recent date that a customer accessed their account.

•

Relationships in the E-R Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 24 © Mark Llewellyn

• As we have mentioned earlier, a the values contained
within a given database often have constraints placed upon
them to ensure that they accurately model the real world
enterprise captured in the database.

• The E-R model has the capability of modeling certain
types of these constraints.

• We will focus on two types of constraints: mapping
cardinalities and participation constraints, which are two of
the more important types of constraints.

Constraints in the E-R Model

COP 4710: Database Systems (Chapter 2) Page 25 © Mark Llewellyn

• Mapping cardinalities (also called cardinality ratios),
express the number of entities to which another entity can
be associated via a relationship set.

• Mapping cardinalities are most useful in describing binary
relationships, although they can be helpful in describing
relationship sets that involve more than two entity sets.
We will focus only on binary relationships for now.

• For a binary relationship set R between entity sets A and B,
the mapping cardinality must be one of the following:

• (1:1) one to one from A to B
• (1:M) one to many from A to B
• (M:1) many to 1 from A to B
• (M:M) many to many from A to B

Constraints in the E-R Model (cont.)

COP 4710: Database Systems (Chapter 2) Page 26 © Mark Llewellyn

Mapping Cardinality: 1:1 from A to B

a1

a2

a3

a4

b1

b2

b3

b4

A B

COP 4710: Database Systems (Chapter 2) Page 27 © Mark Llewellyn

·

Mapping Cardinality: 1:M from A to B

A B

a1

a2

a3

a4

b1

b2

b3

b4

b5

COP 4710: Database Systems (Chapter 2) Page 28 © Mark Llewellyn

·

Mapping Cardinality: M:1 from A to B

A B

a1

a2

a3

a4

b1

b2

b3

b4

b5

a5

COP 4710: Database Systems (Chapter 2) Page 29 © Mark Llewellyn

·

Mapping Cardinality: M:M from A to B

A B

a1

a2

a3

a4

b1

b2

b3

b4

b5

COP 4710: Database Systems (Chapter 2) Page 30 © Mark Llewellyn

• The participation of an entity set E in a relationship set R is
said to be total if every entity in E participates in at least
one relationship in R. If only some of the entities in E
participate in a relationship in R, the participation of entity
set E is relationship R is said to be partial.

• As examples, consider the banking example again. We
would expect that every loan entity be related to at least
one customer through a borrower relationship. Therefore
the participation of loan in the relationship set borrower is
total. In contrast, an individual can be a bank customer
whether or not they have a loan with the bank. Thus, it is
possible that only some of the customer entities will be
related to a loan entity through the borrowers relationship.
Therefore, the participation of the customer entity set in
the borrower relationship is partial.

Participation Constraints in the E-R Model

COP 4710: Database Systems (Chapter 2) Page 31 © Mark Llewellyn

• We must have some mechanism for specifying how
entities within a given entity set are distinguished.

• Conceptually, individual entities are distinct; from a
database perspective, however, the differences among
them must be expressed in terms of their attributes.
Therefore, the values of the attribute values of an entity
must be such that they can uniquely identify the entity. In
other words, no two entities in an entity set are allowed to
have exactly the same value for all attributes.

• A key allows us to identify a set of attributes that suffice to
distinguish entities from each other. Keys also help
uniquely identify relationships, and thus distinguish
relationships from one another.

Keys of an Entity Set

COP 4710: Database Systems (Chapter 2) Page 32 © Mark Llewellyn

• A superkey is a set of one or more attributes that, taken
collectively, allow us to identify uniquely an entity in the
entity set. Suppose that we have an entity set modeling the
students in COP 4710. Suppose that we have the
following schema for this entity set:

Students(SS#, name, address, age, major, minor, gpa, spring-sch)

• Among the attributes which we have associated with each
student must be a set of attributes which will uniquely
distinguish each student. Suppose that we define this set
of attributes to be:

(SS#, name, major, minor)

Primary Keys, SuperKeys and Candidate Keys

COP 4710: Database Systems (Chapter 2) Page 33 © Mark Llewellyn

• This set of attributes (SS#, name, major, minor)
defines a superkey for the entity set Students.
Notice that the set of attributes (SS#, name) also
defines a superkey for this entity set, because
given this second set of attributes we can still
uniquely distinguish each student in the set. The
concept of a superkey is not a sufficient definition
of a key because the superkey, as we can see from
this example, may contain extraneous attributes.

Primary Keys, SuperKeys and Candidate Keys
(cont.)

COP 4710: Database Systems (Chapter 2) Page 34 © Mark Llewellyn

• If the set K is a superkey of entity set E, then so too is any
superset of K. We are interested only in superkeys for
which no proper subset of K is a superkey. Such a
minimal superkey is called a candidate key.

• For a given entity set E it is possible that there may be
several distinct sets of attributes which are candidate keys.

• Either there is only a single such set of attributes or there
are several distinct sets from which only one is selected by
the database designer and this set of attributes defines the
primary key which is typically referred to simply as the key
of the entity set.

Primary Keys, SuperKeys and Candidate Keys
(cont.)

COP 4710: Database Systems (Chapter 2) Page 35 © Mark Llewellyn

• A key (primary, candidate, and super) is a property of the
entity set, rather than of the individual entities. Any two
individual entities in the set are prohibited from having the
same value on all attributes which comprise the key
attributes at the same time. This constraint on the allowed
values of an entity within the set is a key constraint.

• The database designer must use care in the selection of the
set of attributes which comprise the key of an entity set to:
(1) be certain that the set of attributes guarantees the
uniqueness property, and (2) be certain that the set of key
attributes are never, or very rarely, changed.

Primary Keys, SuperKeys and Candidate Keys
(cont.)

COP 4710: Database Systems (Chapter 2) Page 36 © Mark Llewellyn

• The primary key of an entity set allows us to distinguish
among the various entities in the set. There must be a
similar mechanism which allows us to distinguish among
the various relationships in a relationship set.

• Let R be a relationship set involving entity sets E1, E2, …,
En. Let Ki denote the set of attributes which comprise the
primary key of entity set Ei. For now lets assume that

– (1) all attributes names in all primary keys are unique, it will make
the notation easier to understand and it really isn’t a problem if the
names aren’t unique anyway, and

– (2) each entity set participates only once in the relationship.

• Then the composition of the primary key for the relationship set
depends on the set of attributes associated with the relationship
set R in the following ways:

Relationship Sets

COP 4710: Database Systems (Chapter 2) Page 37 © Mark Llewellyn

• (a) If the relationship set R has no attributes associated
with it, then the set of attributes: K1 ∪ K2 ∪ … ∪ Kn
describes an individual relationship in set R.

• (b) If the relationship set R has attributes a1, a2, …, am
associated with it, then the set of attributes: K1 ∪ K2 ∪ …
∪ Kn ∪ { a1, a2, …, am } describes an individual
relationship in set R.

• In both of these cases, the set of attributes: K1 ∪ K2 ∪ …
∪ Kn forms a superkey for the relationship set.

Relationship Sets (cont.)

COP 4710: Database Systems (Chapter 2) Page 38 © Mark Llewellyn

• The structure of the primary key for the relationship set
depends upon the mapping cardinality of the relationship
set. Consider the following case:

• This E-R diagram represents a many to many cardinality
for the relationship depositor with an attribute of access
date associated with the relationship set with two entities
customer and account participating in the relationship.
The primary key of the relationship depositor will consist
of the union of the primary keys of customer and account.

Effect of Cardinality Constraints on Keys

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 39 © Mark Llewellyn

• To further clarify this situation consider for a moment the
schemas of these two entity sets:

Customer (customer-id, customer-name, address, city)

Account (account-number, balance)

• A many-to-many relationship between these two sets
means that it is possible for one customer to have several
accounts and similarly for a given account to be held by
several customers.

• To uniquely identify a relationship between two entities in
customers and accounts will require the union of the
primary keys in both entity sets.

Effect of Cardinality Constraints on Keys

COP 4710: Database Systems (Chapter 2) Page 40 © Mark Llewellyn

• In order to “see” the last deposit made to specific
account number requires that we specify by whom
the deposit was made since several account
holders may have made deposits to the same
account.

• The schema for the depositor relationship is then:

Depositor (customer-id, account-number, access-date)

Effect of Cardinality Constraints on Keys (cont.)

COP 4710: Database Systems (Chapter 2) Page 41 © Mark Llewellyn

• Now consider the case when a customer is only allowed to
have one account. This means that the depositor
relationship is many-to-one from customer to account as
shown in the following diagram.

• In this case the primary key of the depositor relationship is
simply the primary key of the customer entity set. To
clarify this, again look at the schemas of the entity sets:

Customer (customer-id, customer-name, address, city)

Account (account-number, balance)

Effect of Cardinality Constraints on Keys (cont.)

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 42 © Mark Llewellyn

• A many-to-one relationship means that a given customer
can have only a single account then the primary key of the
depositor relationship is simply the primary key of the
customer set since for a given customer they could only
make a single most recent deposit since they only “own”
one account, so specifying the account number is not
necessary to identify a unique deposit by a given customer.

• The schema for the depositor relationship set is then:

Depositor (customer-id, access-date)

Effect of Cardinality Constraints on Keys (cont.)

COP 4710: Database Systems (Chapter 2) Page 43 © Mark Llewellyn

• Now consider the case when the depositor relationship is many-to-one from
account to customer.

• A many-to-one relationship from account to customer means that each
account is owned by at most one customer but each customer may have
more than one account. In this situation the primary key of the depositor
relationship is simply the primary key of the account entity set since there
can be at most one most recent deposit to a given account because at most
one customer could make the deposit. We do not need to uniquely identify
which customer made the deposit in question because there could only be
one.

• The schema for the depositor relationship is then:

Depositor (account-id, access-date)

Effect of Cardinality Constraints on Keys (cont.)

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 44 © Mark Llewellyn

• Just as the cardinality of a relationship set affects the set of
attributes which comprise the primary key of the
relationship set, so too does it affect the placement of the
attributes.

• The attributes of a one-to-one or one-to-many relationship
set can be associated with one of the participating entity
sets, rather than with the relationship set itself. For
example consider the following case:

Placement of Relationship Attributes

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 45 © Mark Llewellyn

• The attribute access-date could be associated with the
account set without loss of information. Since a given
account can be owned by at most one customer it could
have at most one access-date which could be stored in the
account

Placement of Relationship Attributes (cont.)

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 46 © Mark Llewellyn

Now consider the following case:

• The attribute access-date could be associated with either the customer
set or the account set without loss of information. In this case a given
account can be owned by at most one customer and a given customer
can own at most one account. Therefore, if the access-date attribute is
stored with the customer set then it must refer to the last access by this
customer on the only account they can have. Similarly, if the access-
date attribute is stored with the account set, then it must refer to the
last access on this account by the only customer who owns this
account.

Placement of Relationship Attributes (cont.)

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 47 © Mark Llewellyn

Now consider the following case:

• The attribute access-date could be associated with either the customer
set or the account set without loss of information. In this case a given
account can be owned by at most one customer and a given customer
can own at most one account. Therefore, if the access-date attribute is
stored with the customer set then it must refer to the last access by this
customer on the only account they can have. Similarly, if the access-
date attribute is stored with the account set, then it must refer to the
last access on this account by the only customer who owns this
account.

Placement of Relationship Attributes (cont.)

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 48 © Mark Llewellyn

• Therefore, either diagram below would be a correct
representation of this situation:

Placement of Relationship Attributes (cont.)

customer accountdepositor

access date

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 49 © Mark Llewellyn

• When the relationship set has a cardinality constraint of many-to-
many, the situation is much clearer. Consider the following situation:

• account may be owned by several customers, we see that associating
the access-date attribute with either entity set will not properly model
this situation without the loss of information. If we need to model the
date that a specific customer last accessed a specific account the
access-date attribute must be an attributed of the depositor relationship
set, rather than one of the participating entities. For example, if
access-date were an attribute of account we could not determine which
customer made the last access to the account. If access-date were an
attribute of customer we could not determine which account the
customer last accessed.

Placement of Relationship Attributes (cont.)

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 50 © Mark Llewellyn

• The notions of an entity set and a relationship set are not
precise.

• It is possible to define a set of entities and the relationships
among them in a number of different ways. We’ll look
briefly at some of these different approaches to the
modeling of the data.

• To some extent this is where the “art” of database design
becomes tricky. Sometimes several different design
scenarios may all look equally plausible and even after
refinement may still be suitable, sometimes not. Only a
careful design will eliminate some of the problems we’ve
discussed earlier.

Further Design Issues

COP 4710: Database Systems (Chapter 2) Page 51 © Mark Llewellyn

• Consider the entity set: Employee(emp-name, telephone-number, age)

• It could easily be argued that a telephone is an entity in its
own right with attributes of say, telephone-number, location,
manufacturer, serial-num, and so on. If we take this point of
view, then:

1. The Employee entity set must be redefined as:
Employee (emp-name, age)

2. Must create a new entity set:
Telephone(telephone-number, location, manufacturer, serial-num,…)

3. A relationship set must be created to denote the association between
employees and the telephones that they have.
Emp-Phone(emp-name, telephone-number, age, location, manufacturer,
serial-num)

Entity Sets vs. Attributes

COP 4710: Database Systems (Chapter 2) Page 52 © Mark Llewellyn

• Now we must consider what it the main difference between
these two definitions of an employee?

• Treating the telephone as an attribute telephone-number
implies that employees have precisely one telephone number
each. (Note that this must be true or otherwise the telephone-
number attribute would need to be a part of the key for an
employee and it isn’t here – not considering multiple-valued
attributes).

• Treating a telephone as an entity permits employees to have
several phones (including zero) associated with them.
However, we could easily make the telephone-number
attribute be a multi-valued one to allow multiple phones per
employee. So clearly, this is not the main difference in the
two representations.

Entity Sets vs. Attributes (cont.)

COP 4710: Database Systems (Chapter 2) Page 53 © Mark Llewellyn

• The main difference then is that treating a telephone as an
entity better models a situation where one might want to keep
additional information about a telephone, as we have
indicated with our example above.

• If we used the original approach and wished to make the
telephone an attribute of an employee and we wished to
maintain this additional information about their phone, then
the Employee entity set would look like:

Employee(emp-name, telephone-number, age, location, manufacturer,…)

• This is clearly not a good schema, for example, is the age
attribute associated with the employee or the telephone? In
this situation we are attempting to model two different entity
sets inside a single entity set.

Entity Sets vs. Attributes (cont.)

COP 4710: Database Systems (Chapter 2) Page 54 © Mark Llewellyn

• Conversely, it would not be appropriate to treat the attribute
emp-name as an entity; it is difficult to argue that an
employee name is an entity in its own right (in contrast to
the telephone). Thus, it is entirely appropriate to have emp-
name as an attribute of the Employee entity set.

• So, what constitutes and attribute and what constitutes an
entity?

– Unfortunately, there are no simple answers. The distinctions depend
mainly upon the structure of the real-world scenario which is being
modeled, and on the semantics associated with the attribute in
question.

Entity Sets vs. Attributes (cont.)

COP 4710: Database Systems (Chapter 2) Page 55 © Mark Llewellyn

• A common mistake is to use the primary key of an
entity set as an attribute of another entity set, instead
of using a relationship. For example, given our
bank example again, it would not be appropriate to
model customer-id as an attribute of loan even if
each loan had only one customer associated to it.
The relationship borrower is the correct way of
representing the relationship between a loan and a
customer, since it makes their connection explicit
rather than implicit via an attribute.

Entity Sets vs. Attributes (cont.)

COP 4710: Database Systems (Chapter 2) Page 56 © Mark Llewellyn

• The presence of one or more attributes on a relationship
suggests to the designer that the relationship should perhaps
instead be represented as an entity type.

• As associative entity is an entity type that associates the
instances of one or more entity types and contains attributes
that are peculiar to the relationship between those entity
instances.

• For example, (see ER diagram on next page) consider an
organization that wishes to record the date (month and year)
when an employee completes each certification course. The
date completed cannot be associated with either entity sets
EMPLOYEE or COURSE, because Date_Completed is a
property of the relationship Completes.

Associative Entities

COP 4710: Database Systems (Chapter 2) Page 57 © Mark Llewellyn

Associative Entities (cont.)

1/2006

10/2005

11/2005

12/2005

6/2005

Date_Completed

Perl

SQL

SQL

Java

C++

Course_Title

Angela

Angela

Debi

Kristi

Kristi

Employee_Name

Some
sample

data
E-R diagram

representing the
situation

EMPLOYEE COURSECompletes

Date_CompleteEmp_ID

Emp_Name Course_Name

Course_ID

B A

COP 4710: Database Systems (Chapter 2) Page 58 © Mark Llewellyn

Associative Entities (cont.)

E-R diagram representing
the situation expressed as

an associate entity

EMPLOYEE COURSECertificate

Date_Complete

Emp_ID

Emp_Name Course_Name

Course_ID

A B

Certificate_ID

Notice that the cardinality
indicators now terminate on the
associative entity rather than on
the participating entity types.
Thus, an employee who
completes more than one
course will be awarded more
than one certificate.

COP 4710: Database Systems (Chapter 2) Page 59 © Mark Llewellyn

• How do you know whether to convert a relationship into an
associative entity type?

• There are four conditions that should exist:

1. All of the relationships for the participating entity types are
“many” relationships.

2. The resulting associative entity type has independent meaning to
end users, and preferably can be identified with a single-attribute
identifier.

3. The associative entity has one or more attributes, in addition to the
identifier.

4. The associative entity participates in one or more relationships
independent of the entities related in the associated relationship.

Associative Entities (cont.)

COP 4710: Database Systems (Chapter 2) Page 60 © Mark Llewellyn

• It is not always clear whether an object is best
expressed by an entity set or a relationship set.

• Consider the banking example. We have been
modeling a loan as an entity. An alternative is to
model a loan as a relationship between customers
and say branches of the bank, with loan-number and
amount as descriptive attributes. Each loan is then
represented as a relationship between a customer
and a branch.

Entity Sets vs. Relationship Sets

COP 4710: Database Systems (Chapter 2) Page 61 © Mark Llewellyn

• If every loan is owned by exactly one customer and is
associated with exactly one branch, then it may be
satisfactory to model the loan as a relationship.

• However, with this design we cannot represent in a
convenient way the situation in which several customers
jointly own a single loan.

– To handle this type of situation, we would need to define a separate
relationship for each holder of the joint loan.

– Then we would replicate all of the values for the descriptive attributes
loan-number and amount in each such relationship. Each such
relationship must, of course, have the same value for the descriptive
attributes.

Entity Sets vs. Relationship Sets (cont.)

COP 4710: Database Systems (Chapter 2) Page 62 © Mark Llewellyn

• Two problems arise as a result of the replication:

1. The data are stored in multiple locations (the very meaning of
replication).

2. Updates potentially leave the data in an inconsistent state, where the
values in two different sets differ when they should be identical.
We’ll look at the complications that this replication causes as well as
solution techniques (normalization theory) later in the course. Notice
that the problem of replication is absent in our original version
because loan is represented by an entity set in that case.

• One possible guideline in determining whether to use an
entity set or a relationship set is to designate a relationship
set to describe an action that occurs between entities. This
approach can also be useful in deciding whether certain
attributes may be more appropriately expressed as
relationships.

•

Entity Sets vs. Relationship Sets (cont.)

COP 4710: Database Systems (Chapter 2) Page 63 © Mark Llewellyn

• An entity set may not have sufficient attributes to
form a primary key. Such an entity set is termed a
weak entity set. An entity set that has a primary
key is termed a strong entity set.

– As an example, consider an entity set payment, which
has three attributes: payment-number, payment date,
and payment amount. Payment numbers are typically
just sequential numbers, starting at 1 and are generated
separately for each loan. Thus, although each payment
entity is distinct, payments for different loans may
share the same payment number, thus the set does not
have a primary key and is a weak entity set.

Weak Entity Sets vs. Strong Entity Sets

COP 4710: Database Systems (Chapter 2) Page 64 © Mark Llewellyn

• For a weak entity set to be meaningful, it must be
associated with another entity set which is called the
identifying or owner entity set. Every weak entity must be
associated with such an identifying entity set.

• The weak entity is said to be existence dependent on the
identifying set. The identifying set is said to own the weak
entity set that it identifies.

• The relationship associating the weak entity set with the
identifying entity set is called the identifying relationship.
The identifying relationship is many-to-one from the weak
entity set to the identifying set and the participation of the
weak entity set in the relationship is total.

Weak Entity Sets vs. Strong Entity Sets (cont.)

COP 4710: Database Systems (Chapter 2) Page 65 © Mark Llewellyn

• Although a weak entity set does not have a primary key,
we nevertheless need a means of distinguishing among all
those entities in the weak entity set that depend upon one
particular strong entity.

• The set of attributes of a weak entity that allows this
distinction to be made is called the discriminator
(sometimes also called the partial key). For example, the
discriminator of the weak entity set payment from above is
the attribute payment-number, since for each loan, a
payment number uniquely identifies one single payment
for that loan.

Weak Entity Sets vs. Strong Entity Sets (cont.)

COP 4710: Database Systems (Chapter 2) Page 66 © Mark Llewellyn

• The primary key of a weak entity set is formed by the
primary key of the identifying entity set, plus the weak
entity set’s discriminator.

– For the case above, the primary key of the entity set payment
would be: {loan-number, payment-number}, where loan-number
would be the primary key of the identifying entity set loan and
payment-number is the discriminator of the weak entity set
payment.

• Within the E-R diagram, a weak entity set is represented
by a rectangle with double lines and the identifying
relationship for a weak entity set is represented by a
diamond with double lines.

Weak Entity Sets vs. Strong Entity Sets (cont.)

COP 4710: Database Systems (Chapter 2) Page 67 © Mark Llewellyn

Example of a weak entity set.

Weak Entity Sets vs. Strong Entity Sets (cont.)

loan

loan-num amount

loan-
payment

payment

payment-num

payment-date

amount

COP 4710: Database Systems (Chapter 2) Page 68 © Mark Llewellyn

• Some features of a real world situation can be
difficult to model using only the features of the E-R
model that we have seen so far.

• Some quite common concepts require extending the
E-R model to incorporate mechanisms for modeling
these features. Again, we won’t look at all of them,
but rather an overview of some of the more
important extensions.

Extensions of the E-R Model

COP 4710: Database Systems (Chapter 2) Page 69 © Mark Llewellyn

• An entity set may include sub-groupings of entities that are
distinct in some way from other entities in the set. For
instance, a subset of entities within an entity set may have
attributes that are not shared by all the entities in the set.

– As an example, consider the entity set person, with attributes name,
street, and city. A person could further be classified as one of the
following: student or instructor. Each of these person types is
described by a set of attributes that includes all of the attributes of the
entity set person, plus possibly some additional attributes. For
example, student entities may be further described by the attributes
gpa, and credit-hours-earned, whereas, instructor entities are not
characterized by these attributes, but rather a different set such as,
salary, and years-employed.

• The process of designating sub-groupings within an entity set
is called specialization.

Specialization

COP 4710: Database Systems (Chapter 2) Page 70 © Mark Llewellyn

• The specialization of person allows us to distinguish among
persons according to whether they are students or instructors.

• Specialization can be repeatedly applied so that there may be
specializations within specializations.

• In terms of an E-R diagram, specialization is depicted by a
triangle shaped component which is labeled ISA, which is a
shorthand form of the “is-a” superclass-subclass relationship.

• The ISA relationship is illustrated in the diagram in the next
slide.

Specialization (cont.)

COP 4710: Database Systems (Chapter 2) Page 71 © Mark Llewellyn

Specialization (cont.)

person

name street city

instructor student

gpa

credit-hours-earned

office

years-
employed

adjunct regular-faculty administrator

course-listing

salary

section phone

ISA

ISA

COP 4710: Database Systems (Chapter 2) Page 72 © Mark Llewellyn

• The refinement from an initial entity set into successive
levels of entity sub-groupings represents a top-down design
approach in which distinctions are made explicit.

• This same design process could also proceed in a bottom-up
approach, in which multiple entity sets are synthesized into a
higher-level entity on the basis of common attributes. In
other words, we might have first identified the entity set
students(name, address, city, gpa, credit-hours-earned) and
an entity set instructors(name, address, city, salary, years-
employed).

• This commonality of attributes is expressed by
generalization, which is a containment relationship that
exists between a higher-level entity set and one or more
lower level entity sets.

Generalization

COP 4710: Database Systems (Chapter 2) Page 73 © Mark Llewellyn

• In our example, person is the higher-level entity set and
instructor and student are the lower-level entity sets.

• The higher-level entity set represents the superclass and the
lower-level entity represents the subclass. Thus, person is
the superclass of the instructor and student subclasses.

• For all practical purposes, generalization is just the inverse of
specialization and both processes can be applied (almost
interchangeably) in designing the schema for some real-
world scenario. Notice in the E-R diagram on page 70 that
there is no difference specified between generalization and
specialization other that how you view the picture (reading
from the top down or from the bottom up).

Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 74 © Mark Llewellyn

• Differences in the two approaches are normally characterized
by their starting points and overall goal:

• Specialization arises from a single entity set; it emphasizes
differences among the entities within the set by creating
distinct lower-level entity sets. These lower-level entity sets
may have attributes or participate in relationships, that do not
apply to all the entities in the higher-level entity set.

• In fact, the reason that a designer may need to use
specialization is to represent such distinctive features of the
real world scenario.

– For example, if instructor and student neither have attributes that
person entities do not have nor participate in relationships different
than those in which person entities participate, there would be no
need to specialize the person entity set.

Specialization vs. Generalization

COP 4710: Database Systems (Chapter 2) Page 75 © Mark Llewellyn

• Generalization arises from the recognition that a number of
entity sets share some common characteristics (namely, they
are described by the same attributes and participate in the
same relationship sets).

• On the basis of these commonalities, generalization
synthesizes these entity sets into a single, higher-level entity
set.

• Generalization is used to emphasize the similarities among
lower-level entity sets and to hide the differences. It also
permits an economy of representation in that the shared
attributes are not replicated.

Specialization vs. Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 76 © Mark Llewellyn

• A crucial property of the higher and lower level entities that
are created by specialization and generalization is attribute
inheritance.

• The attributes of the higher-level entity sets are said to be
inherited by the lower-level entity sets.

– In our example above, instructor and student both inherit all the
attributes of person (recall that person is the superclass for both
instructor and student).

• A lower-level entity set (or subclass) also inherits
participation in the relationship sets in which its higher-level
entity set (its superclass) participates.

• A lower-level entity (subclass) inherits all attributes and
relationships which belong to the higher-level entity set
(superclass) which defines it.

Attribute Inheritance

COP 4710: Database Systems (Chapter 2) Page 77 © Mark Llewellyn

• Higher-level entity sets do not inherit any attribute or
relationship which is defined within the lower-level entity
set.

• Typically, what is developed will be a hierarchy of entity
sets in which the highest-level entity appears at the top of the
hierarchy.

• If, in such a hierarchy, a given entity set may be involved as
a lower-level entity set in only one ISA relationship, then the
inheritance is said to be single-inheritance.

• If, on the other hand, a given entity set is involved as a
lower-level entity set in more than one ISA relationship, then
the inheritance is said to be multiple-inheritance (then the
resulting structure is called a lattice).

Attribute Inheritance (cont.)

COP 4710: Database Systems (Chapter 2) Page 78 © Mark Llewellyn

• In order to more accurately model a real-world situation, a data
designer may choose to place constraints on a generalization (or
specialization).

• The first type of constraint involves determining which entities can
be members of a given lower-level entity set. This membership
can be defined in one of the following two ways:

Predicate-defined: In predicate-defined lower-level entity sets,
membership is evaluated on the basis of whether or not an entity
satisfies an explicit predicate (a condition).

– For example, assume that the higher-level entity set account has the
attribute account-type. All account entities are evaluated on the
defining account-type attribute. Only those entities that satisfy the
predicate account-type = “savings account” would be allowed to
belong to the lower-level entity set savings-account. Since all the
lower-level entities are evaluated on the basis of the same attribute,
this type of generalization is said to be attribute-defined.

Constraints on Generalization

COP 4710: Database Systems (Chapter 2) Page 79 © Mark Llewellyn

User-defined: User-defined lower-level entity sets are not
constrained by a membership condition; rather, the database
user assigns entities to a given entity set.

– For instance, suppose that after working 3 months at a bank, the
employee is assigned to one of five different work groups. The teams
would be represented as five lower-level entity sets of the higher-
level entity set employee. A given employee is not assigned to a
specific work group automatically on the basis of an explicit defining
condition. Instead, the user responsible for making the group
assignment does so on an individual basis, which may be arbitrary.

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 80 © Mark Llewellyn

• A second type of generalization constraint relates to whether
or not entities may belong to more than one lower-level
entity set within a single generalization. The lower-level
entity sets may be one of the following:

Disjoint: A disjointness constraint requires that an entity belong
to no more than one lower-level entity set. In the example
from above, an account entity can satisfy only one condition
for the account-type attribute at any given time.

– For example, an account-type might be either a checking account or a
savings account, but it cannot be both.

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 81 © Mark Llewellyn

Overlapping: In overlapping generalizations, the same entity
may belong to more than one lower-level entity set within a
single generalization. For example, consider the banking
work group from the previous section. Suppose that certain
managers may participate in more than one work team. A
given employee (a manager) may therefore appear in more
than one of the group entity sets that are lower-level entity
sets of employee.

– Note: lower-level entity overlap is the default case; a disjointness constraint
must be placed explicitly on a generalization (or specialization). Within the
E-R model a disjointness constraint is modeled by placing the word “disjoint”
next to the triangle symbol as shown in the example below. The meaning of
this diagram should now be clear: employees and customers are
specializations of the set persons and the disjointness constraint implies that
an employee is not also a customer. If the disjoint constraint is removed,
then it is possible for an employee to also be a customer (or viewed from the
other direction, it is possible for a person to be both a customer as well as an
employee).

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 82 © Mark Llewellyn

• A final type of constraint, the completeness constraint on a
generalization or specialization, specifies whether or not an
entity in the higher-level entity set must belong to at least one
of the lower-level entity sets within the
generalization/specialization. This type of constraint can
assume one of the following two forms:

Total generalization/specialization: Each higher-level entity
must belong to a lower-level entity.

Partial generalization/specialization: Some higher-level entities
may not belong to any lower-level entity set.

– Partial generalization is the default case. (Recall that total participation in a
relationship is represented in the E-R model by a double line – so too will it
be used to represent a total generalization. In the example shown below the
generalization is total and overlapping which means that every person must
appear as either an employee or a customer and it is possible for a person to
be both.

Constraints on Generalization (cont.)

COP 4710: Database Systems (Chapter 2) Page 83 © Mark Llewellyn

A total overlapping generalization/specialization

Example ERDs with Constraints

person

employee customer

ISA

COP 4710: Database Systems (Chapter 2) Page 84 © Mark Llewellyn

• One of the limitations of the E-R model is that it cannot express
relationships among relationships. To understand why this is
important consider the ternary relationship (3-way relationship)
works-on between employee, branch, and job shown in the
following E-R diagram.

Aggregation

employee branch

job

works-on

title level

branch_id

city

assets

emp-id

emp-name

city

street

COP 4710: Database Systems (Chapter 2) Page 85 © Mark Llewellyn

• Given this scenario, now suppose that we want to record the managers for
tasks performed by an employee at a branch office; that is, we want to
keep track of managers for (employee, branch, job) combinations. Let’s
assume that there is an entity set manager.

• One way to handle this is to create a quaternary relationship as shown
below.

Aggregation (cont.)

manager

manages

employee
works-on

branch

job

COP 4710: Database Systems (Chapter 2) Page 86 © Mark Llewellyn

Question: Why wouldn’t’ a binary relationship between
manager and employee work?

Answer:

Aggregation (cont.)

A binary relationship would not permit us to
represent which (branch, job) combinations of an
employee are managed by which manager.

COP 4710: Database Systems (Chapter 2) Page 87 © Mark Llewellyn

• When you look at the E-R diagram which models this
situation, it would appear that the relationships sets works-on
and manages could be combined into a single relationship
set. However, we cannot do this since some employee,
branch, job combinations may not have a manager.

• There is clearly redundant information in this figure,
however, since every employee, branch, job combination in
manages is also in works-on. If the manager were a value
rather than an entity, we could make manager a multi-valued
attribute of the relationship works-on. However, doing this
would make it more difficult (both logically as well as in
execution cost) to find, for example, employee-branch-job
triples for which the manager is responsible. However, this
option is not available in any case since the manager is a
manager entity.

Aggregation (cont.)

COP 4710: Database Systems (Chapter 2) Page 88 © Mark Llewellyn

• The best way to model this type of situation is to use
aggregation.

• Aggregation is an abstraction through which relationships are
treated as higher-level entities.

• Thus, in our example, we would regard the relationship set
works-on (relating the entity sets employee, branch, and job)
as a higher-level entity set called works-on. Such an entity
set is treated in the same manner as any other entity set. We
can then create a binary relationship manages between
works-on and manager to represent who manages what tasks.

• The E-R diagram in the next slide illustrates how aggregation
is represented in the E-R model.

Aggregation (cont.)

COP 4710: Database Systems (Chapter 2) Page 89 © Mark Llewellyn

Aggregation (cont.)

manager

manages

employee works-on branch

job

ERD illustrating aggregation

COP 4710: Database Systems (Chapter 2) Page 90 © Mark Llewellyn

• Most of the relationships that we have examined so far have
been binary relationships, i.e., those relationships involving
two entity sets.

• Any relationship involving more than two entity sets can be
converted to a collection of binary, many-to-one
relationships.

– This is useful because, while the E-R model does not limit
relationships to binary, many data models do, such as the Object
Definition Language.

• To illustrate the conversion of a multiway relationship into a
collection of binary relationships, consider the example E-R
diagram on the next page.

Multiway Relationships

COP 4710: Database Systems (Chapter 2) Page 91 © Mark Llewellyn

Multiway Relationships (cont.)

contract moviesstars

studios

name

name

name

address

year

date

address

country

studio of star producing studio

COP 4710: Database Systems (Chapter 2) Page 92 © Mark Llewellyn

Multiway Relationship Converted to a
Collection of Binary Relationships

contract

date

stars

name address

movies

name year

studio

name address

country

star-of

studio-of

movie-of

producing
studio

COP 4710: Database Systems (Chapter 2) Page 93 © Mark Llewellyn

• Roles in an E-R diagram are indicated by labeling the lines that
connect entity sets to relationship sets.

• Roles can be identified for unary (recursive), binary, and
nonbinary relationships.

E-R Diagrams with Role Indicators

employee branchemployedbinary works-at worker

employee employedunary manager

worker

COP 4710: Database Systems (Chapter 2) Page 94 © Mark Llewellyn

• Some of the parts of UML are:
1. Class diagram. A class diagram is similar to an E-R

diagram. We’ll see the correspondence between them
shortly.

2. Use case diagram. Use case diagrams show the interaction
between users and the system, in particular the steps of
tasks that users perform (such as withdrawing money from
a bank account or registering for a course).

3. Activity diagram. Activity diagrams depict the flow of
tasks between various components of the system.

4. Implementation diagram. Implementation diagrams show
the system components and their interconnections, both at
the software component level and the hardware
component level.

The Unified Modeling Language (UML) (cont.)

COP 4710: Database Systems (Chapter 2) Page 95 © Mark Llewellyn

Correspondence of E-R & UML Class Diagrams

Entity sets and attributes

customer

customer-name

customer-id

customer-street

customer-city

E-R Diagram UML Class Diagram

customer name

customer-id
customer-name
customer-street
customer-city

COP 4710: Database Systems (Chapter 2) Page 96 © Mark Llewellyn

Correspondence of E-R & UML Class Diagrams (cont.)

Relationships

E-R Diagrams UML Class Diagrams

E1 E2Rrole1 role2
E1 E2

role1 role2R

E1 E2Rrole1 role2

att1 att2

E1 E2
role1 role2

R
att1
att2

COP 4710: Database Systems (Chapter 2) Page 97 © Mark Llewellyn

Correspondence of E-R & UML Diagrams (cont.)

Cardinality Constraints

E-R Diagrams UML Diagrams

E1 E2R0..* 0..1
E1 E2

0..1 0..*R

NOTE: Positioning of cardinality constraints
is exactly opposite in the two models. In the
UML model the constraint 0..1 on the left side
means that an E2 entity can participate in at
most 1 relationship, whereas each E1 entity
can participate in many relationships; in other
words, the relationship is many to one from E2
to E1

COP 4710: Database Systems (Chapter 2) Page 98 © Mark Llewellyn

Correspondence of E-R & UML Class Diagrams (cont.)

Generalization & Specialization

E-R Diagrams

UML Class Diagrams

customer employee

person

ISA
overlapping generalization

employeecustomer

person

COP 4710: Database Systems (Chapter 2) Page 99 © Mark Llewellyn

disjoint

Correspondence of E-R & UML Class Diagrams (cont.)

Generalization & Specialization

E-R Diagrams

UML Class Diagrams

customer employee

person

ISA
disjoint generalization

employeecustomer

person

COP 4710: Database Systems (Chapter 2) Page 100 © Mark Llewellyn

• Referential integrity constraints can be as simple as
asserting that a given attribute have a non-null, single
value. However, referential integrity constraints most
commonly refer to the relationships among entity sets.

• Let’s again consider our banking example and the
many-to-one relationship between customer and
account as shown below:

Referential Integrity Constraints

customer accountdepositor

access date

COP 4710: Database Systems (Chapter 2) Page 101 © Mark Llewellyn

• The many-to-one relationship depositor simply says that no
account can be deposited into by more than one customer (and
also that a customer can deposit into many different accounts).

• More importantly, it does not say that an account must be
deposited into by a customer, nor does it say that a customer
must make a deposit into an account. Further, it does not say
that if an account is deposited into by a customer that the
customer be present in the database!

• A referential integrity constraint requires that each entity
“referenced” by the relationship must exist in the database.

• There are several methods which can be used to enforce
referential integrity constraints:

Referential Integrity Constraints (cont.)

COP 4710: Database Systems (Chapter 2) Page 102 © Mark Llewellyn

1. Deletion of a referenced entity is not allowed. In other words, if
Kristi makes a deposit into account number 456, then
subsequently we cannot delete either the information concerning
either Kristi or account 456.

2. If a referenced entity is deleted, then all entries that reference the
deleted entity also be deleted. In other words, if we delete the
information on Kristi, then we must delete all account
information for accounts that she (alone) has deposited into.
Notice in the specific example we are considering, that the
relationship is M:1 which means that if Kristi has deposited into
an account, she will be the only customer to do so. This will not
be the case for a M:M relationship however.

• Referential integrity constraints can be modeled in the E-R
model. Typically, they are depicted with a curved arrow as
shown on the next page.

Referential Integrity Constraints (cont.)

COP 4710: Database Systems (Chapter 2) Page 103 © Mark Llewellyn

Referential Integrity Constraints (cont.)

customer accountdepositor

access date

Rounded arrow indicates the
existence constraint on

accounts via its relationship
depositor with customers.

